
Journal of Geometry and Physics 42 (2002) 64–77

Quantization of inhomogeneous Lie bialgebras

P.P. Kulisha,∗, A.I. Mudrovb

a St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191011, Russia
b Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

Received 7 July 2001; accepted 6 September 2001

Abstract

A self-dual class of Lie bialgebra structures(g, g∗) on inhomogeneous Lie algebrasg describing
kinematical symmetries is considered. In that class, bothg andg∗ split into the semi-direct sumsg =
h�v andg∗ = h∗ �v∗ with abelian ideals of translationsv andh∗. We build the explicit quantization
of the universal enveloping algebraU(g), including the coproduct, commutation relations among
generators, and, in case of coboundaryg, the universalR-matrix. This class of Lie bialgebras forms
a self-dual category stable under the classical double procedure. The quantization turns out to be
a functor to the category of Hopf algebras which commutes with operations of dualization and
double. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inhomogeneous Lie groups such as Poincaré and Galilei groups play an important role in
classical physics and geometry [1]. They realize the maximal sets of (continuous) symme-
tries of the simply connected (pseudo)Riemannian spaces of zero curvature [2]. The general-
ization of the semi-direct product of classical groups in the framework of non-commutative
geometry is the bicrossproduct of two Hopf algebrasA andB characterized by actions
of A on B andB∗ onA∗ (the Hopf duals toB andA) [4]. Nowadays, there are numer-
ous examples of bicrossproducts known, including those among quantum deformations of
the Cayley–Klein algebras [3]. The simplest case of the bicrossproduct construction is the
second (so-called non-standard) quantization of the Borel subalgebrab(2) ⊂ sl(2) [5].

∗ Corresponding author.
E-mail addresses:kulish@pdmi.ras.ru (P.P. Kulish), mudrova@macs.bui.ac.il (A.I. Mudrov).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(01)00073-0



P.P. Kulish, A.I. Mudrov / Journal of Geometry and Physics 42 (2002) 64–77 65

This algebra is also the result of Drinfeld’s twist [7,8] of the universal enveloping algebra
U(b(2)) [6]. Another examples of twisted bicrossproduct Hopf algebra are the null-plane
quantized Poincaré algebra [9] and extended jordanian deformations ofU(sl(N)) [10].
These quantizations involve special non-degenerate 1-cocycles on Lie groups [10–12]. All
those algebras are twist-equivalent to classical universal enveloping algebras, and that equiv-
alence manifests itself in an isomorphism of the corresponding tensor categories of modules.
Quasitriangular bicrossproduct Hopf algebras with non-unitaryR-matrices were found in
[13] via the quantum double construction in the framework of the matched pairs of finite
groups. The present work is devoted to the study of “continuous” bicrossproduct Hopf
algebras with abelian invariant subalgebras. In the classical differential geometry, these
correspond to inhomogeneous Lie groups, containing a normal vector subgroup of trans-
lations. Quantization of such algebras appears to possess a number of remarkable features,
for example, invariance of the category of interest with respect to dualization and the double
procedures. We obtain explicit expressions for the coproduct, commutation relations, and
the antipode in the quantized algebras. That allowed us to carry out the detailed study of
their quantum doubles, construct canonical elements andR-matrices for generic quasitrian-
gular Hopf algebras from the category under investigation. We use a kind of “universality”
of the double construction, discovered by Radford [14] and meaning the following: every
quasitriangular Hopf algebra contains a minimal quasitriangular Hopf subalgebra which is
a quotient of the quantum double of a certain Hopf subalgebra. We prove the Lie bialgebra
analog of this theorem.

The possibility to quantize an arbitrary Poisson manifold was proven in [15]. Neverthe-
less, to construct such a quantization explicitly remains a very difficult task. In the case of
semi-simple Lie algebras, this problem is solved for every Belavin–Drinfeld triple [16] by
twisting the standard quantization of Drinfeld [5]. In this paper, we deal with a different
class of Lie algebras which possess abelian ideals.

Let G andG∗ be the simply connected Lie groups corresponding to the Lie algebrasg
andg∗. They are decomposed into the smashed productsG = H � V andG = H ∗ � V ∗
of groups corresponding to the semi-direct sumsg = h � v andg∗ = h∗ � v∗. The genera-
tors of the quantized universal enveloping algebras constructed below may be thought of as
functions on the groupG∗ endowed with the Poisson–Lie structure. It turns out that the com-
mutation relations between generators are exactly the Poisson–Lie brackets. In particular,
the restriction of this bracket to the subgroupV ∗ is commutative and remains undeformed.
This picture is similar to that in the polarized deformation quantization [17]. According to
[17], the∗-product restricted to the sheaf of functions constant along a polarization of a
sufficiently general type remains undeformed.

2. Quantum double and quasitriangularity

This section formulates the analog of Radford’s theorem on minimal quasitriangular
Hopf algebras [14]. This result can be carried over to a coboundary Lie bialgebra whose
r-matrix satisfies the classical Yang–Baxter equation [18]. We start with the following
elementary proposition from the linear algebra. LetL be a finite dimensional vector space
andL∗ be its dual. Consider an elementr ∈ L ⊗ L, which is thought of as a linear operator
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L∗ → L: r(x) = 〈x ⊗ id, r〉. The dual conjugater∗ is again an operatorL∗ → L acting
asr∗(x) = 〈id ⊗ x, r〉. DenoteL+ andL− the images ofr andr∗, respectively. Actually,
r ∈ L− ⊗L+ ⊂ L⊗L. Let {li} be a basis inL+ and{li} its dualL∗. The canonical element
l = li ⊗ li ∈ L∗+ ⊗ L+ does not depend on the choice of the basis.

Lemma 2.1. As linear spaces, L∗+ ∼ L−. The elementr is the image of the canonical
element l under the induced isomorphismL∗+ ⊗ L+ → L− ⊗ L+ identical on the second
tensor factor.

Proof. The first statement of the lemma follows from the two commutative diagrams:

wherer̃ is defined by the left one, and the isomorphismL∗+ → L− is given by the dual
mapr̃∗. Let us prove that the map̃r∗ ⊗ id brings the canonical elementl ∈ L∗+ ⊗ L+ right
to r. Indeed, the canonical element is interpreted as the identity map via the identification
L∗+ ⊗ L+ ∼ Hom(L+,L+): 〈l, r(x) ⊗ id〉 = r(x). Then, for everyx, y ∈ L∗, we have
〈(r̃∗ ⊗ id)(l), x ⊗ y〉 = 〈l, r(x) ⊗ y〉 = 〈r(x), y〉 = 〈r, x ⊗ y〉. �

Now, consider the situation whenL is a finite dimensional Lie bialgebrag, whose Lie
cobracket is determined by a solutionr ∈ g⊗2 of the classical Yang–Baxter equation [18]

[r12, r13] + [r12, r23] + [r13, r23] = 0.

This equation is supported in∈ g⊗3, and the subscripts indicate the way of embedding of
the tensor square into the tensor cube. It follows from this equation that the imagesg+ =
r(g∗),g− = r∗(g∗), and their linear sum are themselves sub-Lie bialgebras. Moreover,g++
g− is the minimal quasitriangular sub-Lie bialgebra, where the classicalr-matrix lives in
fact. Sincer∗ is Lie algebra homomorphism but a coalgebra anti-homomorphism, it also can
be regarded as a morphism in the Lie bialgebra category,g∗+ being endowed with the opposite
bracket. According to [5,18], the classical doubleD(g+) is a unique Lie algebra ong+ +g−
such thatg± are Lie subalgebras and the pairing between them is ad-invariant. The double
D(g+) is a coboundary Lie bialgebra, with the classicalr-matrix being the canonical element
l defined as in Lemma 2.1 forg = L. It is considered as an element ofD(g+) ⊗D(g+).

Theorem 2.2. Embeddingsg± → g define a homomorphismD(g+) → g. The matrix
r ∈ g⊗2 is the image of the canonical elementl ∈ D⊗2(g+) under this homomorphism.

Proof. By Lemma 2.1,r is the image of the canonical elementl. Restricted tog±, the map
D(g+) → g preserves the Lie structures separately. Let us show that for the commutator
[g+, g−]. Consider the paring of the left-hand side of the classical Yang–Baxter equation
with arbitrary elementsx, y, z ∈ g∗

〈[r12, r13], x ⊗ y ⊗ z〉 + 〈[r13, r23], x ⊗ y ⊗ z〉 + 〈[r12, r23], x ⊗ y ⊗ z〉 = 0.
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Having introduced the notationsx+ = r(x) ∈ g+, x− = r∗(x) ∈ g−, wherex ∈ g∗, rewrite
this equality as

〈[y−, z−], x〉 + 〈[x+, y+], z〉 + 〈[x+, z−], y〉 = 0.

This is equivalent to

[x+, z−] = (x+ � z)− − (z− � x)+,

where� = −ad∗|g stands for the conjugate to the adjoint representation. Since the mapping
i∗ : g∗ → g∗+ ∼ g− is a homomorphism ofg+-modules (and the same is the case with
replacement± → ∓), the latter expression can be rewritten as

[x+, z−] = x+ � z− − z− � x+,

where� is already considered as−ad∗|g± . But this is exactly the cross-commutator in the
classical doubleD(g+) [5]. �

Theorem 2.2 is the quasiclassical analog of the theorem proven in [14] for Hopf algebras
(strictly speaking, finite dimensional). Recall that a Hopf algebraA is called quasitriangular
[5] if there exists an invertible elementR ∈ A⊗2 (the universalR-matrix), such that

(∆ ⊗ id)(R) = R13R23, (id ⊗ ∆)(R) = R13R12,

R∆(a) = ∆′(a)R, a ∈ A,

where the prime denotes the opposite coproduct. These conditions imply thatR satisfies
the Yang–Baxter equation

R12R13R23 = R23R13R12.

The universalR-matrix defines two algebra and anti-coalgebra homomorphisms fromA∗ to
A, a → 〈a⊗ id,R〉 anda → 〈id ⊗a,R−1〉 = 〈id ⊗a, (S ⊗ id)(R)〉, their images denoted
A+ andA−. Hopf algebraA− is isomorphic toA∗+ taken with the opposite multiplication.
Recall that the quantum doubleD(A+), which is built on the tensor product ofA+ and
A∗+,op embedded there as sub-bialgebras [5]. The commutation relations between elements
of these two factors are encoded in the Yang–Baxter equation for the canonical element
l = ai ⊗ ai ∈ A∗+,op ⊗A+, where{ai} is the basis inA+ and{ai} its dual inA∗+.

Theorem 2.3 (Radford [14]). EmbeddingsA± → A define a homomorphismD(A+) →
A of Hopf algebras. The universalR-matrixR ∈ A⊗2 is the image of the canonical element
l ∈ D⊗2(A+) under this homomorphism.

Proof. The mapD(A+) → A is defined as identical onA+ ⊗ 1 and the isomorphism
1 ⊗ A∗+,op → A− given by the universalR-matrix. It respects the bialgebra structures
when restricted to these sub-bialgebras. The image of the canonical elementl under this
mapping is theR-matrix, by Lemma 2.1, and the cross-relations in the quantum double go
over into the quantum Yang–Baxter equation fulfilled by theR-matrix. Hence the map of
concern is a homomorphism. The image of this homomorphism includes sub-Hopf algebras
A± and it is exactly that subalgebra inA where theR-matrix is supported. �
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Remark 2.4. In the Drinfeld–Jimbo semi-simple Lie bialgebras [5], the subspacesg+ and
g− intersect by the Cartan subalgebra. The corresponding quantized universal enveloping
algebras belong to the class of the factorizable Hopf algebras introduced in [19]. For that
type of Hopf algebras, Theorem 2.3 was proven therein. A different class of Lie bialgebras
are those with skew-symmetricr-matrices. There, the Lie subalgebrag+ coincides withg−.
The simplest example of that kind is the coboundary Borel subalgebrab(2) in sl(2). The
double of quantizedU(b(2)) was studied in [20,21].

3. Inhomogeneous Lie bialgebras and their quantization

Let (g, g∗) be a Lie bialgebra endowed with an involutive mapσ : g→ g. We assumeσ
to be automorphism ofg, while the dual mapσ ∗ an anti-automorphism ofg∗.

Definition 3.1. A triple (g, g∗, σ ) such thatσ - andσ ∗-invariant subspaces are Lie subal-
gebras ing andg∗ is called inhomogeneous Lie bialgebra.

It follows from the definition thatg is represented by the semi-direct sumg = h � v, where
v is the eigenspace ofσ corresponding the eigenvalue−1. Sincev is assumed to be a Lie
subalgebra, it is commutative. The Lie subalgebrah is the subspace ofσ -stable points. The
dual Lie algebrag∗ = h∗ � v∗ has the same structure asg, with σ replaced by−σ ∗. There,
the subalgebrah∗ is a commutative ideal. In terms of the basis elementsHi ∈ h andXµ ∈ v,
the Lie bracket and cobracket ong read

δ(Xµ) = γ µ
ρσ (X

ρ ⊗ Xσ ), δ(Hi) = αk
ρi(X

ρ ⊗ Hk − Hk ⊗ Xρ),

[Xµ,Xν ] = 0, [Hi,Hk] = Cm
ikHm, [Hi,X

µ] = A
µ
iνX

ν. (1)

The summation over repeating indices is understood throughout the paper. The tensorsCm
ik

andγ µ
ρσ are the structure constants of Lie algebrash andv∗, correspondingly. MatricesAi

andαµ realize representations ofh onv andv∗ onh∗, respectively.
To form a Lie bialgebra, the Lie structures ong andg∗ must be compatible [5]. For the

inhomogeneous Lie bialgebras that condition takes the form

A
µ
iνγ

ν
ρσ − γ µ

νσA
ν
iρ − γ µ

ρνA
ν
iσ = A

µ
kσα

k
ρi − A

µ
kρα

k
σ i, (2)

αk
µmCm

ij − Ck
imαm

µj − Ck
mjα

m
µi = αk

νjA
ν
iµ − αk

νiA
ν
jµ. (3)

The inhomogeneous Lie bialgebras form a category which we denote asB. Its morphisms
respect Lie brackets and cobrackets and commute with the involutionσ .

Remark 3.2. It will be shown in the next section that there is a Lie algebra structure on the
linear sumh+ v∗ includingh andv∗ as subalgebras. Conversely, given a decomposition of
a Lie algebra into the sum of Lie subalgebrasa andb, one has actions ofa on b and vice
versa. An inhomogeneous Lie bialgebra can be built by settingh = a, v = b∗, whereb∗ is
assumed to be abelian, anda acts onb∗ by the dual conjugate action. Inhomogeneous Lie
bialgebras are in one-to-one correspondence with such decompositions, which are the Lie
algebra counterparts of the matched pairs of groups [4].
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DenoteH,H ∗, V , V ∗ andG = H � V , G∗ = H ∗ � V ∗, the simply connected Lie
groups corresponding to the Lie algebrash, h∗, v, v∗ andg, g∗. Our quantization method
relies on the quantum duality principle [5,22] as applied to the problem of “exponentiating”
Lie bialgebras of concern. Following this principle, we consider a quantized enveloping
algebra as a set of non-commutative functions on the groupG∗. In accordance with the
dual group method [23], we are looking for the deformed coproduct on the quantized
U(g) in the same form as if the generators ofg were commutative. In that commutative
case, the coproduct is given by the same formulas as on the function algebra on the dual
groupG∗, in a neighborhood of the identity parameterized by the Lie algebrag∗. The
problem is then reduced to finding commutation relations among the generators such that
the coproduct would be coassociative and homomorphic. Integrating the Lie product ing∗
to the multiplication inG∗, we fix the coproduct on the generators:

∆(Xµ) = Dµ(X ⊗ 1,1 ⊗ X), ∆(Hi) = (eα·X)ki ⊗ Hk + Hi ⊗ 1. (4)

We use the notationD(·, ·) for the Campbell–Hausdorff series corresponding to the Lie
algebrav∗ andα ·X for the matrix with entriesαi

ρkX
ρ . The coproduct is evidently coasso-

ciative, as the elementsXµ commute with each other. The problem boils down to evaluating
the complete set of quantum commutation relations consistent with (4). We will search for
them in the form

[Xµ,Xν ] = 0, [Hi,Hk] = C(X)mikHm, [Hi,X
µ] = A(X)

µ
i , (5)

treating the quantized structure coefficients as formal series in elementsXµ.

Theorem 3.3. There exists the unique quantization of the bialgebra(g, g∗) as a Hopf
algebra with coproduct(4) and commutation relations(5), such that

C(0)mik = Cm
ik ,

∂A
µ
i

∂Xν
(0) = A

µ
iν.

This quantization is a functor from the categoryB to a subcategory of Hopf algebras.

Proof. First, one has to check the consistency between commutation relations (5) and
coproduct (4). Substituting (4) into [∆(H),∆(X)] = ∆([H,X]), we come to the equation

A(D(X′, X′′))µi = (eα·X′
)ki ∂

′′
ν D

µ(X′, X′′)A(X′′)νk + ∂ ′
νD

µ(X′, X′′)A(X′)νi , (6)

where primes distinguish the tensor factors. RegardingXµ as the coordinate functions on
the Lie groupV ∗, we considerA(X)

µ
i as a set of vector fields labeled by the indexi, in a

normal neighborhood of the identity. Then, Eq. (6) is nothing else than

A(ξ ◦ ζ )
µ
i = (eα·ξ )ki LξA(ζ )

µ
k + RζA(ξ)

µ
i , ξ, ζ ∈ v∗, (7)

whereLξ , Rξ stand for the left and right actions of the groupV ∗ on the vector fields. Note
that they both commute with the action via the matricesαµ. Transition to the functions
Â(ξ) = R−1

ξ A(ξ) leads to the group 1-cocycle equation

Â(ξ ◦ ζ )
µ
i = (eα·ξ )ki ad(ξ)Â(ζ )

µ
k + Â(ξ)

µ
i , (8)
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which has the unique solution, provided the differential dÂ(0) is a corresponding 1-cocycle
of the Lie algebrav∗. That is a part of the Lie bialgebra consistency conditions (2) on the
pair (g, g∗). The explicit formula for the functionsA(X)νi is

A(X)
µ
i =

(
γ ′′ · X

eγ
′′·X − 1

eα
′·X+γ ′′·X − 1

α′ · X + γ ′′ · X

)kµ

iν

Aν
kρX

ρ. (9)

Here (γ · X)
µ
ν = γ

µ
σνX

σ specifies the adjoint representation of the Lie algebrav∗. We
mark the matrices with primes to stress that they act on the different groups of indices.
Note that formula (9) is simplified in the case of abelianv∗: thenA(X)

µ
i takes the form

A(X)
µ
i = ((eα·X − 1)/α · X)

µ
ν A

ν
iρX

ρ .
Requirement [∆(H),∆(H)] = ∆([H,H ]) leads to the following two equations:

C(D(X′, X′′))kij = C(X′)kij (10)

meaning that the coefficientsC(X)ijk are actually constant, and

(eα·X)kmCm
ij − Ck

mn(e
α·X)mi (eα·X)nj = [Hi, (e

α·X)kj ] − [Hj , (e
α·X)ki ]. (11)

The Lie algebra representation ofv∗ onh∗ by the matricesαµ induces an anti-homomorphism
of the groupV ∗ into the linear group Aut(h). The expressions on the right-hand side of
(11) are the vector fieldsA(X)i transferred by that map to End(h). In terms of matrices
a = eα·X, we rewrite (11) as

ak
mCm

ij − Ck
mna

m
i an

j = A(a)kij − A(a)kji (12)

or

aC(a−1 ⊗ a−1) − C = A(a)π(a−1 ⊗ a−1), (13)

where we introduced the anti-symmetrizerπ : π
ij
kl = δikδ

j
l − δil δ

j
k . The left-hand side of

this equation is a coboundary 1-cocycle on the linear group, so we must prove that for the
right-hand side. Then, since group 1-cocycles are uniquely determined by their derivatives
at the identity, (13) will follow from (3). By virtue of (7), we have

A(ba)π((ba)−1 ⊗ (ba)−1)

= (A(b)(a ⊗ a) + bA(a))(a−1 ⊗ a−1)π(b−1 ⊗ b−1)

= A(b)π(b−1 ⊗ b−1) + b{A(a)π(a−1 ⊗ a−1)}(b−1 ⊗ b−1)

as required.
The counit is evident:ε(Hi) = ε(Xµ) = 0. The antipode is determined on the generators

by the coproduct:S(Xµ) = −Xµ, S(Hi) = −(e−α·X)ki Hk. Let us prove that it is extended
anti-homomorphically over the whole algebra. That is trivial in the commutativeX-sector.
Further,

[S(Hi), S(X
µ)]=(e−α·X)ki [Hk,X

µ]=(e−α·X)ki A(X)
µ
k = −A(−X)

µ
i = S([Xµ,Hi ]),
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as immediately follows from formula (9). Condition [S(Hi), S(Hj )] = S([Hj ,Hi ]) boils
down to verification of

Ck
mna

−1m

i a−1n

j + a−1m

i [Hm, a−1n

j ] + a−1n

j [a−1m

i ,Hn] = a−1k

m Cm
ij , a = eα·X.

We represent it as

S(Ck
mna

m
i an

j ) + S([Hi, a
n
j ]) + S([am

i ,Hj ]) = S(ak
mCm

ij ),

which holds true in view of (12).
Thus, we described the Hopf structure of the quantized algebraU(g), g ∈ B. We have

yet to check that the quantization is a natural transformation of categories. Letφ be a
Lie bialgebra morphismg → g′ such thatφσ = σ ′φ. This implies thatφ(h) ⊂ h′ and
φ(v) ⊂ v′. We define the mapΦ : Uq(g) → Uq(g′) by the same formulas on the generators
asφ:

Φ(Xµ) = φ
µ

ν′X
ν′
, Φ(Hi) = φk′

i Hk′ .

The mapΦ can be extended to the whole quantum algebras as a Hopf homomorphism. That
is evident for the coproduct because it is given by the product in the dual Lie groups, and
φ is a Lie bialgebra homomorphism. That can be shown for the commutation relations as
well. Indeed, the quantum commutator (9) differs from the classical one by involvement of
the matrices(α ·X)ik and(γ ·X)

µ
ν . They specify the adjoint representation of the subalgebra

v∗ ⊂ g∗. Becauseφ∗ is a homomorphism of the dual Lie algebras and preservesσ -invariant
subspaces, matricesφk′

i andφν
µ′ are pulled throughα·X andγ ·X properly, e.g.(αµ′Xµ′

)φ =
φ(αµφ(Xµ)), so the proof becomes immediate. �

Remark 3.4. We denoteUq(g), the quantization of the universal enveloping algebraU(g).
Here q is a symbolical notation rather than a deformation parameter. The deformation
parameter can be introduced by rescalingα → ln(q)α, γ → ln(q)γ of the structure
constants ofg∗. As a module overC[[h]], h = ln (q), the algebraUq(g) is flat. The
parameterh may take any value, while the conventional deformation quantization is defined
as an algebra over formal series inh. In that respect, the algebraUq(g) is a particular case
of deformation quantization.

AlgebraUq(g) contains two classical objects: universal enveloping algebraU(h) and the
commutative algebra of functions Fun(V ∗)on the groupV ∗. In accordance with our conven-
tion, we may assume Fun(V ∗) ∼ Uq(v). Actually,Uq(g) is a bicrossproduct Hopf algebra
U(h) � Uq(v), with the coaction onU(h) given byHi → (eα·X)ki ⊗ Hk.

4. Duality, double, and quantization

We denoteH the image of the categoryB with respect to the quantization functor. The
categoryB is evidently self-dual, the involutionσ going over into−σ ∗. Let us prove the
analogous assertion forH and deduce explicitly the canonical element.
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Theorem 4.1. The categoryH is self-dual. Moreover, U∗
q (g) = Uq(g∗).

Proof. As a linear space,Uq(g) is the tensor productUq(v) ⊗ U(h). There are two natural
algebra maps fromU∗(h) andU(v∗) into U∗

q (g): we setη → εv ⊗ η andζ → ζ ⊗ εh for
η ∈ U∗(h) andζ ∈ U∗(v). An easy check shows that

〈ηζ, ϕ(X)ψ(H)〉 = 〈η ⊗ ζ, ϕ(∆(X))ψ(∆(H))〉 = 〈η,ψ(H)〉〈ζ, ϕ(X)〉. (14)

Here, we identify the functionalsζ , η with their images inU∗
q (g). Formula (14) implies that

linear spacesU∗(h) andU(v∗) are isomorphically embedded intoU∗
q (g) (in fact, these are

homomorphisms of associative algebras, see Appendix A), and the induced mapU(v∗) ⊗
U∗(h) → U∗(h)U(v∗) is a linear bijection onU∗

q (g).
Let us choose, as the generators ofU∗

q (g), the bases{ηi} ⊂ h∗ and{ζµ} ⊂ v∗ dual to
{Hi} and {Xµ}. It can be shown that the coproduct and the commutation relations have
the structure of (4) and (1), in terms of the generatorsζµ, η

i . That is done in Appendix A.
According to Theorem 3.3, the Lie bialgebra(g∗, g) admits the unique quantizationUq(g∗)
belonging to the categoryH. Hence, it coincides withU∗

q (g). �

Because of factorization (14) and due to the fact that the matrix elements〈η,ψ(H)〉 and
〈ζ, ϕ(X)〉 are the same as ifHi andζµ were primitive elements of the classical universal
enveloping algebras, we can write down the canonical elementT ∈ Uq(g∗) ⊗ Uq(g).
However, it is convenient to deal with the opposite algebraUq(g∗)op; moreover, it is that
algebra which takes part in construction of the double, the subject of our further interest. In
Appendix A, we derive the formula

T = exp(ζµ ⊗ Xµ)exp(ηi ⊗ Hi) (15)

for the canonical elementT ∈ Uq(g∗)op ⊗ Uq(g).
Now, we proceed to the study of the double in the categoryH. Written explicitly, the Lie

product inD(g) is

[Xµ,Xν ] = 0, [ηi, ηj ] = 0, [Xµ, ηi ] = 0, [Hi,Hk] = Cm
ikHm,

[ζµ, ζν ] = γ σ
νµζσ , [Hi, ζµ] = −αk

µiHk − Aν
iµζν, [Hi,X

µ] = A
µ
iνX

ν,

[Hi, η
j ] = C

j

kiη
k + α

j
µiX

µ, [ζµ, η
i ] = −αi

µkη
k,

[ζµ,X
ν ] = −γ ν

σµX
σ − Aν

iµη
i . (16)

It is seen that the linear sumh+ v∗ forms a Lie subalgebra (cf. Remark 3.2) acting on the
abelian idealh∗ + v. Observe that the classical double ofg ∈ B, is again a Lie bialgebra
fromB. The Lie coalgebra onD(g) is that of the direct sumg⊕ g∗, and the corresponding
involution isσ ⊕ (−σ ∗).

Theorem 4.2. The quantum double construction preserves the categoryH. Moreover, the
classical and quantum doubles are related by the formulaD(Uq(g)) = Uq(D(g)).

Proof. As a coalgebra, the quantum double coincides with the tensor product ofUq(g) and
Uq(g∗)op, which are embedded as subalgebras, at the same time. Therefore, to prove the
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theorem, it suffices to show that the cross-relations have the appropriate form. Then, we will
satisfy the conditions of Theorem 3.3 which states the uniqueness of the quantization and
provides its explicit form. The cross-relations are deduced from the Yang–Baxter equation
on the canonical element in the double and are written as

eµe
ν = eαeβm

ν
γασm

ρβσ
µ Sγ

ρ ,

where{eµ} is a linear basis inUq(g) and{eµ} ⊂ Uq(g∗) its dual. The tensorsmν
γασ and

m
ρβσ
µ denote the iterated coproduct structure constants, andS

γ
ρ is the matrix of the antipode.

Using explicit formulas (4) for the coproducts

(∆ ⊗ id) ◦ ∆(X) = D(X ⊗ 1 ⊗ 1,1 ⊗ X ⊗ 1,1 ⊗ 1 ⊗ X),

(∆ ⊗ id) ◦ ∆(H) = eα·X ⊗ eα·X ⊗ H + eα·X ⊗ H ⊗ 1 + H ⊗ 1 ⊗ 1,

(∆ ⊗ id) ◦ ∆(η) = D(η ⊗ 1 ⊗ 1,1 ⊗ η ⊗ 1,1 ⊗ 1 ⊗ η),

(∆ ⊗ id) ◦ ∆(ζ) = eA·η ⊗ eA·η ⊗ ζ + eA·η ⊗ ζ ⊗ 1 + ζ ⊗ 1 ⊗ 1, (17)

we get the required result. Consider, e.g.,

Hζ = 〈e−α·X, ζ 〉H + 〈e−α·X, eA·η〉ζH + 〈H, e−A·η〉ζ
(only non-vanishing terms retained). Thus, we obtain the expression for the commutator
[Hi, ζµ] = −αk

µiHk −Aν
iµζν . Similarly, one can prove thatXµ andηi form a commutative

algebra, invariant under the adjoint action ofHi andζµ. �

Let us illustrate the construction of the double by the example wheng = h with the
nil cobracket. In this case,Uq(g) = U(g), and the quantum double is that of the clas-
sical universal enveloping algebra. The double of the group algebra of a compact group
finds applications in topological filed theories with topological interactions (see, e.g. [24]
and references therein). The algebraD(U(g)) is generated by the elementsHi and ηi

with the undeformed commutation relations. The universalR-matrix is then the group el-
ementR = exp(ηi ⊗ Hi). ConditionR∆(Hi) = ∆′(Hi)R immediately follows from
the commutation relations, because the group element is invariant with respect to the ad-
joint action of the subalgebrah. EquationR∆(ηi) = 4′(ηi)R is better to check in the
form

R12(∆ ⊗ id)(exp(ηi ⊗ Hi))R
−1
12 = (∆′ ⊗ id)(exp(ηi ⊗ Hi)),

which is just the Yang–Baxter equation. It is also a simple corollary of theh-invariance of
theR-matrix. We use here the fact that the group element exp(ηi ⊗ Hi) is a bicharacter of
the double.

The remainder of this section is devoted to quantization of coboundary Lie bialgebras
from B. To use the advantages of functorial property of the quantization, we assume that
the r-matrix, as a Lie bialgebra morphismg∗ → g (with g∗ equipped with the opposite
bracket) be that inB. It means thatr commutes with the involutionσ (we recall that for
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dual Lie bialgebra(g∗, g), the involutive map is taken to be−σ ∗). The general form ofr is
then

r = P i
µHi ⊗ Xµ +Qi

µX
µ ⊗ Hi. (18)

Proposition 4.3. The universalR-matrixR ∈ U⊗2
q (g) quantizing the classicalr-matrix

(18) is given by the formula

R = exp(P i
µHi ⊗ Xµ)exp(Qi

µX
µ ⊗ Hi). (19)

Proof. Ther-matrix defines a homomorphismD(g+) → g according to Theorem 2.2. We
apply the quantization functor to this homomorphism getting a homomorphism of Hopf
algebrasD(Uq(g+)) → Uq(g), along the line of Theorem 3.3. Then, we evaluate that Hopf
algebra homomorphism on the canonical element (15) thus coming to (19). �

Formula (19) generalizes the expression for the universalR-matrix corresponding to the
jordanian quantizationU(b(2)) of the Borel subalgebrab(2) ⊂ sl(2) [20].

5. Conclusion

Drinfeld’s conjecture of the possibility to quantize an arbitrary Lie bialgebra was proven
by Etingof and Kazhdan [25]. Although there are numerous examples of quantum algebras,
the problem of exponentiating a Lie bialgebra structure in every particular case remains
highly non-trivial. In this paper, we did it for a class of algebras playing significant role
in the classical differential geometry and physics, namely inhomogeneous Lie algebras.
This class forms a nice self-dual category invariant under the quantum double operation.
The quantization built is a functor from the Lie bialgebra category of concern into the
sub-category of Hopf algebras. This functor commutes with the functor of dualization and
the double procedure. We showed that the quantization of inhomogeneous Lie algebras
possessing classicalr-matrix contains a quasitriangular Hopf algebra and gave an explicit
expression for the universalR-matrix.

The class of Hopf algebras considered in this paper includes the twisted universal en-
veloping Lie algebras investigated in [10–12]. Those are characterized by the identification
v ∼ h∗ and involve non-degenerate Lie algebra 1-cocycles in building the semi-direct
sum h � h∗. The class of inhomogeneous Lie bialgebras is much wider than that stud-
ied in [10–12], since the double of a triangular Hopf algebra is not a triangular
one.

The appearance of Lie group 1-cocycles in construction of quantization is quite under-
standable. According to Drinfeld [5], a group 1-cocycle with value in the Lie algebra exterior
square defines a Poisson–Lie structure on the group. GeneratorsHi ∈ h andXµ ∈ v are
the coordinate functions on the dual groupG∗ = H ∗ � V ∗, and the quantum commutation
relations among them represent nothing else than the Poisson bracket. Indeed, the classical
commutation relations of the types [Hi,Hj ] and [Xµ,Xν ] are given by the Poisson–Lie
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structure on the abelian subgroupH ∗ and the trivial Poisson bracket on the subgroupV ∗.
Further, the Poisson bracket must satisfy the relation

∆({H,X}) = {eα·X ⊗ H + H ⊗ 1,D(X ⊗ 1,1 ⊗ X)}
= (eα·X ⊗ 1){1 ⊗ H,D(X ⊗ 1,1 ⊗ X)}

+ {H ⊗ 1,D(X ⊗ 1,1 ⊗ X)}∆({H,H })
= {eα·X ⊗ H + H ⊗ 1, eα·X ⊗ H + H ⊗ 1}
= eα·Xeα·X ⊗ {H,H } + {H,H } ⊗ 1 + {eα·X,H } ⊗ H + {H, eα·X} ⊗ H

(20)

(we drop all the indices for the reason of transparency). These expressions involve the
Poisson bracket and the multiplication in the function algebra on the groupG∗ = H ∗ �V ∗.
It is seen that only the product in Fun(V ∗) actually enters formula (20). This product
commutative and coincides with that onUq(v) ⊂ Uq(g). So, the commutation relations (5)
and the Lie–Poisson bracket amongHi andXµ satisfy the same functional equations (see
Theorem 3.3) and, therefore, must coincide.
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Appendix A

The aim of this appendix is to exhibit the details of the proof of the formula (15). The
canonical element for the universal enveloping algebraU(v∗) is [5]

eζµ⊗Xµ =
∑
n

∑
�µ

(ζµ1, . . . , ζµn) ⊗ Xµ1, . . . , Xµn,

where�µ = {µ1, . . . , µn} stands for the ordered multi-index of lengthn, and the parentheses
denote symmetrized monomials(ζµ1, . . . , ζµn) = (1/n!)(1/s( �µ))(

∑
σ ζσ(µ1), . . . , ζσ(µn))

of degreen. Here,σ runs over all permutations of the multi-index�µ. The symmetry coeffi-
cient s( �µ) is equal to the order of the stability subgroup of�µ. Similarly, we
have

eη
i⊗Hi =

∑
n

∑
�i

ηi1, . . . , ηin ⊗ (Hi1, . . . , Hin)

for the algebraU(h). Hence, due to the factorization of the matrix elements of the canonical
pairing (see Section 4), the elementeζµ⊗Xµ

eη
i⊗Hi is canonical forUq(g)∗op. It remains to

check formulas (4) and (5) for the coproduct and the commutation relations on the generators
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ζµ, η
i .

〈ηiηj ,Xµ1, . . . , Xµn(Hi1, . . . , Him)〉
= ε(Xµ1, . . . , Xµn)〈ηi ⊗ ηj ,∆(Hi1, . . . , Him)〉
= ε(Xµ1, . . . , Xµn)〈ηi ⊗ ηj ,∆0(Hi1, . . . , Him)〉.

The transition from∆ to the classical coproduct∆0 is performed in the following way.
While pushing the factors(eα·X)ki appearing in∆(Hik ) to the left, we act as though they
commute with allHi . That can be done because the elementsXµ’s generate an ideal and,
once appeared, they are annihilated by the elementsηi . Then, all the factors(eα·X)ki being
placed on the left are reduced to 1. So, the generatorsηi have the classical commutative
multiplication. Further,

〈ζµζν,Xµ1, . . . , Xµn(Hi1, . . . , Him)〉
= 〈ζµ ⊗ ζν,∆(Xµ1, . . . , Xµn(Hi1, . . . , Him))〉
= 〈ζµ ⊗ ζν,∆(Xµ1, . . . , Xµn)((Hi1, . . . , Him) ⊗ 1)〉
= ε(Hi1, . . . , Him)〈ζµ ⊗ ζν,∆(Xµ1, . . . , Xµn)〉,

and, therefore,ζ ’s generate the classical universal enveloping Lie algebraU(v∗), with the
ordinary Lie commutation relations. Among the matrix elements

〈ζµηi, Xµ1, . . . , Xµn(Hi1, . . . , Him)〉
= 〈ζµ ⊗ ηi, (Xµ1, . . . , Xµn ⊗ 1)∆(Hi1, . . . , Him)〉

only those survive, wheren ≤ 1. Developing products of∆(H)’s, we see that monomials
1 ⊗ Hi1, . . . , Hik turn out to be symmetrized automatically, hence, we can retain terms of
the first degree in 1⊗ Hi only. Furthermore, ifn = 1, then with necessitym = 1. The
non-vanishing pairings are

〈ζµηi, Xµ1(Hi1, . . . , Him)〉 = 〈ζµ ⊗ ηi,Xµ1(Hi1, . . . , Him−1)(e
α·X)kim ⊗ Hk〉

= 〈ζµ ⊗ ηi, ϕ(X) ⊗ Hk〉,
whereϕ(X) is a result of pulling the exponential to the left. Thus, we state that the commu-
tatorζµηi −ηiζµ does not vanish only on the elements(Hi1, . . . , Him), therefore, it depends
solely onηi .

We have yet to find the coproduct. It is straightforward that∆(η) survives on the el-
ements containing noX’s and, therefore, is expressed by the Campbell–Hausdorff series
corresponding toU(h). For ∆(ζ) the non-trivial pairing is with elementsXµ ⊗ 1 and
(Hi1, . . . , Him) ⊗ Xµ. While pullingH ’s to the right, we can assume that they commute
with X’s via the classical relations. The commutator is linear inX because the higher
degrees will vanish. Thus, we come to the desired formula

∆(ζµ) = (eA·η)νµ ⊗ ζν + ζµ ⊗ 1.

Thus, we verified that the algebra generated byηi, ζµ belongs to the categoryH and proved
the formula (15) for the canonical element.
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