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Abstract

A self-dual class of Lie bialgebra structurngs g*) on inhomogeneous Lie algebrgagescribing
kinematical symmetries is considered. In that class, patidg* splitinto the semi-direct sungs=
h>v andg* = h* <v* with abelian ideals of translatiomsandh*. We build the explicit quantization
of the universal enveloping algeht&(g), including the coproduct, commutation relations among
generators, and, in case of coboundgrghe universaR-matrix. This class of Lie bialgebras forms
a self-dual category stable under the classical double procedure. The quantization turns out to be
a functor to the category of Hopf algebras which commutes with operations of dualization and
double. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inhomogeneous Lie groups such as Poincaré and Galilei groups play an important role in
classical physics and geometry [1]. They realize the maximal sets of (continuous) symme-
tries of the simply connected (pseudo)Riemannian spaces of zero curvature [2]. The general-
ization of the semi-direct product of classical groups in the framework of non-commutative
geometry is the bicrossproduct of two Hopf algebrésind B characterized by actions
of A on B and B* on A4* (the Hopf duals td3 and.4) [4]. Nowadays, there are numer-
ous examples of bicrossproducts known, including those among quantum deformations of
the Cayley—Klein algebras [3]. The simplest case of the bicrossproduct construction is the
second (so-called non-standard) quantization of the Borel subalgé®rac sl(2) [5].
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This algebra is also the result of Drinfeld’s twist [7,8] of the universal enveloping algebra
U (2)) [6]. Another examples of twisted bicrossproduct Hopf algebra are the null-plane
guantized Poincaré algebra [9] and extended jordanian deformatididgstifv)) [10].

These quantizations involve special non-degenerate 1-cocycles on Lie groups [10-12]. All
those algebras are twist-equivalent to classical universal enveloping algebras, and that equiv-
alence manifests itselfin an isomorphism of the corresponding tensor categories of modules.
Quasitriangular bicrossproduct Hopf algebras with non-unifxmatrices were found in

[13] via the guantum double construction in the framework of the matched pairs of finite
groups. The present work is devoted to the study of “continuous” bicrossproduct Hopf
algebras with abelian invariant subalgebras. In the classical differential geometry, these
correspond to inhomogeneous Lie groups, containing a normal vector subgroup of trans-
lations. Quantization of such algebras appears to possess a number of remarkable features,
for example, invariance of the category of interest with respect to dualization and the double
procedures. We obtain explicit expressions for the coproduct, commutation relations, and
the antipode in the quantized algebras. That allowed us to carry out the detailed study of
their quantum doubles, construct canonical elementsanmtrices for generic quasitrian-

gular Hopf algebras from the category under investigation. We use a kind of “universality”
of the double construction, discovered by Radford [14] and meaning the following: every
quasitriangular Hopf algebra contains a minimal quasitriangular Hopf subalgebra which is
a quotient of the quantum double of a certain Hopf subalgebra. We prove the Lie bialgebra
analog of this theorem.

The possibility to quantize an arbitrary Poisson manifold was proven in [15]. Neverthe-
less, to construct such a quantization explicitly remains a very difficult task. In the case of
semi-simple Lie algebras, this problem is solved for every Belavin—Drinfeld triple [16] by
twisting the standard quantization of Drinfeld [5]. In this paper, we deal with a different
class of Lie algebras which possess abelian ideals.

Let G andG* be the simply connected Lie groups corresponding to the Lie alggbras
andg*. They are decomposed into the smashed prodiicts H > V andG = H* « V*
of groups corresponding to the semi-direct syms h > v andg* = h* < v*. The genera-
tors of the quantized universal enveloping algebras constructed below may be thought of as
functions on the grou* endowed with the Poisson—Lie structure. It turns out that the com-
mutation relations between generators are exactly the Poisson—Lie brackets. In particular,
the restriction of this bracket to the subgrowip is commutative and remains undeformed.
This picture is similar to that in the polarized deformation quantization [17]. According to
[17], the x-product restricted to the sheaf of functions constant along a polarization of a
sufficiently general type remains undeformed.

2. Quantum double and quasitriangularity

This section formulates the analog of Radford’s theorem on minimal quasitriangular
Hopf algebras [14]. This result can be carried over to a coboundary Lie bialgebra whose
r-matrix satisfies the classical Yang—Baxter equation [18]. We start with the following
elementary proposition from the linear algebra. Ldie a finite dimensional vector space
andL* be its dual. Consider an elemené L ® L, which is thought of as a linear operator



66 P.P. Kulish, A.l. Mudrov / Journal of Geometry and Physics 42 (2002) 64-77

L* - L:r(x) = (x ® id, r). The dual conjugate* is again an operatdr* — L acting
asr*(x) = (id ® x, r). DenoteL ;. andL _ the images of andr*, respectively. Actually,
relL_®L, cL®L.Let{l;} beabasisih_ and{l'} its dualL *. The canonical element
I=I'®l e L% ® L does not depend on the choice of the basis.

Lemma 2.1. As linear spacgsL’ ~ L_. The element is the image of the canonical
element | under the induced isomorphish ® L — L_ ® L identical on the second
tensor factor

Proof. The first statement of the lemma follows from the two commutative diagrams:

*

r

U ) L L*
7, < .

L L

O/ \0 0/ \0

wherer is defined by the left one, and the isomorphisin — L _ is given by the dual
map7*. Let us prove that the mafj ® id brings the canonical elemeht L* ® L, right

to r. Indeed, the canonical element is interpreted as the identity map via the identification
LT ® Ly ~Hom(Ly,Ly): (I, r(x) ®id) = r(x). Then, for everyr, y € L*, we have
((FF@id)D), x®@y) =({r(x)®y)=(r(x),y) =({rnx®y). U

Now, consider the situation when is a finite dimensional Lie bialgebrg whose Lie
cobracket is determined by a solutiore g®2 of the classical Yang—Baxter equation [18]

L*
T

[r12, r13] + [r12, 23] + [r13, r23] = 0.

This equation is supported in g®3, and the subscripts indicate the way of embedding of
the tensor square into the tensor cube. It follows from this equation that the images
r(g*),g— = r*(g*), andtheir linear sum are themselves sub-Lie bialgebras. Moregver,

g— is the minimal quasitriangular sub-Lie bialgebra, where the classioatrix lives in

fact. Since* is Lie algebra homomorphism but a coalgebra anti-homomorphism, it also can
be regarded as amorphismin the Lie bialgebra categbiyeing endowed with the opposite
bracket. According to [5,18], the classical douBlgy. ) is a unique Lie algebra gn. +g-—

such thag 1 are Lie subalgebras and the pairing between them is ad-invariant. The double
D(g4+)isacoboundary Lie bialgebra, with the classicatatrix being the canonical element

[ defined as in Lemma 2.1 fgr= L. Itis considered as an element®{g) ® D(g.).

Theorem 2.2. Embeddinggi. — g define a homomorphis®(gy+) — g. The matrix
r € g®2is the image of the canonical elemént D®?(g, ) under this homomorphism

Proof. By Lemma 2.1r is the image of the canonical eleménRestricted tg.., the map
D(g+) — g preserves the Lie structures separately. Let us show that for the commutator
[g+, g—]. Consider the paring of the left-hand side of the classical Yang—Baxter equation
with arbitrary elements, y, z € g*

([r2, 13, x @y ®z) + ([r13, 723, x ® y ® z) + {[r12, 23], x ® y ® z) = 0.
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Having introduced the notationsg = r(x) € g+, x— = r*(x) € g_, wherex € g*, rewrite
this equality as

<[y—1 Z—]’ X) + <[)C+, y+]s Z) + <[x+7 Z—], y) =0.
This is equivalent to

[xt,z-] = (4> 2)- — (2= > X)4,

where> = —ad"|4 stands for the conjugate to the adjoint representation. Since the mapping
i* . g* — gt ~ g_ is a homomorphism of,-modules (and the same is the case with
replacemeni- — ), the latter expression can be rewritten as

[xy,z- ] =xypz- —z->xg,

wheres is already considered asad*|g, . But this is exactly the cross-commutator in the
classical doubl®(g.) [5]. O

Theorem 2.2 is the quasiclassical analog of the theorem proven in [14] for Hopf algebras
(strictly speaking, finite dimensional). Recall that a Hopf algebiacalled quasitriangular
[5] if there exists an invertible elemef e A®? (the universaR-matrix), such that

(A ®id)(R) = R13R23, (id ® A)(R) = R13R12,
RA@) = A'(@R, acA,

where the prime denotes the opposite coproduct. These conditions impli thetisfies
the Yang—Baxter equation

R12R13R23 = Ro3R13R12.

The universaR-matrix defines two algebra and anti-coalgebra homomorphismsrota

Aa — (a®id, R) anda — (id®a, R™1) = (i[d®a, (S®id)(R)), theirimages denoted

A, andA_. Hopf algebrad _ is isomorphic tad? taken with the opposite multiplication.
Recall that the quantum doubl2(.A. ), which is built on the tensor product of; and

A’} op €mbedded there as sub-bialgebras [5]. The commutation relations between elements
of these two factors are encoded in the Yang—Baxter equation for the canonical element
l=a"®a; € A% o, ® Ay, where{q;} is the basis ind, and{a'} its dual in.A%..

Theorem 2.3 (Radford [14]). Embeddings4d,. — A define a homomorphisf(A,) —
A of Hopf algebras. The univers&-matrix R € A% is the image of the canonical element
I € D®?(A,) under this homomorphism

Proof. The mapD(A;) — A is defined as identical ol ® 1 and the isomorphism

1® AL o, — A- given by the universaR-matrix. It respects the bialgebra structures
when restricted to these sub-bialgebras. The image of the canonical eleoretgr this
mapping is theR-matrix, by Lemma 2.1, and the cross-relations in the quantum double go
over into the quantum Yang—Baxter equation fulfilled by tenatrix. Hence the map of
concern is ahomomorphism. The image of this homomorphism includes sub-Hopf algebras
Ay and itis exactly that subalgebra.ihwhere theR-matrix is supported. O
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Remark 2.4. In the Drinfeld—Jimbo semi-simple Lie bialgebras [5], the subspg¢esnd

g— intersect by the Cartan subalgebra. The corresponding quantized universal enveloping
algebras belong to the class of the factorizable Hopf algebras introduced in [19]. For that

type of Hopf algebras, Theorem 2.3 was proven therein. A different class of Lie bialgebras

are those with skew-symmetriematrices. There, the Lie subalgelgracoincides withg_.

The simplest example of that kind is the coboundary Borel subaldgByan sl(2). The

double of quantizetf (b(2)) was studied in [20,21].

3. Inhomogeneous Lie bialgebras and their quantization

Let (g, g*) be a Lie bialgebra endowed with an involutive mapy — g. We assume
to be automorphism gf, while the dual map * an anti-automorphism gj*.

Definition 3.1. A triple (g, g*, o) such that - ando *-invariant subspaces are Lie subal-
gebras ing andg* is called inhomogeneous Lie bialgebra.

It follows from the definition tha is represented by the semi-direct sgr& ) > v, where
v is the eigenspace of corresponding the eigenvalu€l. Sincep is assumed to be a Lie
subalgebra, itis commutative. The Lie subalgdpismthe subspace af-stable points. The
dual Lie algebrg* = h* < v* has the same structure gswith o replaced by-o*. There,
the subalgebri* is a commutative ideal. In terms of the basis eleméhts h andX* € v,
the Lie bracket and cobracket gmead

S(XM) =yl (X @ X7),  8(H;) = (X’ ® Hy — Hy ® X7),

[X* X"]1=0, [H;, Hy] = C} Hy, [H;, X"] = Al X". 1)
The summation over repeating indices is understood throughout the paper. The @&hsors
andy) are the structure constants of Lie algebyasdv*, correspondingly. Matrices;
ando,, realize representations pfon v andv* on h*, respectively.

To form a Lie bialgebra, the Lie structures grandg* must be compatible [5]. For the
inhomogeneous Lie bialgebras that condition takes the form

k
Aluypa_yvaAV yvav _AZU pl A;:p i’ (2)
k
aMmCim C,maw Crjet W—a szu a A‘]’/L 3)

The inhomogeneous Lie bialgebras form a category which we dendtelessmorphisms
respect Lie brackets and cobrackets and commute with the involation

Remark 3.2. It will be shown in the next section that there is a Lie algebra structure on the
linear sumj + v* includingh andv™* as subalgebras. Conversely, given a decomposition of

a Lie algebra into the sum of Lie subalgebtaandb, one has actions af on b and vice

versa. An inhomogeneous Lie bialgebra can be built by sefitiagn, v = b*, whereb* is
assumed to be abelian, an@cts onb* by the dual conjugate action. Inhomogeneous Lie
bialgebras are in one-to-one correspondence with such decompositions, which are the Lie
algebra counterparts of the matched pairs of groups [4].
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DenoteH, H*,V,V* andG = H >V, G* = H* « V*, the simply connected Lie
groups corresponding to the Lie algebta$*, v, v* andg, g*. Our quantization method
relies on the quantum duality principle [5,22] as applied to the problem of “exponentiating”
Lie bialgebras of concern. Following this principle, we consider a quantized enveloping
algebra as a set of non-commutative functions on the grétipin accordance with the
dual group method [23], we are looking for the deformed coproduct on the quantized
U(g) in the same form as if the generatorsgoivere commutative. In that commutative
case, the coproduct is given by the same formulas as on the function algebra on the dual
group G*, in a neighborhood of the identity parameterized by the Lie alggbrdhe
problem is then reduced to finding commutation relations among the generators such that
the coproduct would be coassociative and homomorphic. Integrating the Lie prodyict in
to the multiplication inG*, we fix the coproduct on the generators:

AXM=D"X®L1X), AH)=E"@H+H L 4)
We use the notatio® (., -) for the Campbell-Hausdorff series corresponding to the Lie
algebrav* anda - X for the matrix with entries,, X”. The coproduct is evidently coasso-
ciative, as the elemeni&"* commute with each other. The problem boils down to evaluating

the complete set of quantum commutation relations consistent with (4). We will search for
them in the form

[X*, X"] =0, [H;, Hi] = C(X)ig Hm. [Hi X'] = AX)}, ®)

treating the quantized structure coefficients as formal series in eleXiénts

Theorem 3.3. There exists the unique quantization of the bialgelarag*) as a Hopf
algebra with coproducf4) and commutation relation&), such that

n
i

CO) = CJi, 0) = AL,

axv

This quantization is a functor from the categd®yto a subcategory of Hopf algebras

Proof. First, one has to check the consistency between commutation relations (5) and

coproduct (4). Substituting (4) inta\[(H), A(X)] = A([H, X]), we come to the equation
ADX', X" = (@ X)%! D (X', X"YAX")) + 8, D* (X', X")A(X')Y, (6)

where primes distinguish the tensor factors. Regardificas the coordinate functions on
the Lie groupV*, we consideﬂ(X)ﬁ‘ as a set of vector fields labeled by the indein a
normal neighborhood of the identity. Then, Eq. (6) is nothing else than

AE o O = (LAY + RAA®)Y, &¢ v, @)

whereLg, Re stand for the left and right actions of the group on the vector fields. Note
that they both commute with the action via the matriegs Transition to the functions

A(¢) = R; "A(#) leads to the group 1-cocycle equation

AE ol = (e Hrade)A) + A®F, (8)



70 P.P. Kulish, A.l. Mudrov / Journal of Geometry and Physics 42 (2002) 64-77

which has the unique solution, provided the differential@) is a corresponding 1-cocycle
of the Lie algebrar*. That is a part of the Lie bialgebra consistency conditions (2) on the
pair (g, g*). The explicit formula for the functiond (X)! is

’ ” ku
y// X Y X+y"X 1
A}, X" (9)

AX) =
X0; <eV”'X—1ot’-X+y”-X

iv

Here (y - X)i} = y4,X° specifies the adjoint representation of the Lie algetitawe
mark the matrices with primes to stress that they act on the different groups of indices.
Note that formula (9) is simplified in the case of abelign thenA(X)ﬁ‘ takes the form
AQOF = (e** = 1) Ja - X)ffA}’po.

RequirementA(H), A(H)] = A([H, H]) leads to the following two equations:

CDX', X"y = C(X (10)
meaning that the coefficien&(X )J?k are actually constant, and
(%) Ct = Chn(e® )7 (X)) = [Hi, (e* ™)X = [H. (e* )] (11)

The Lie algebrarepresentationddfonh* by the matriceg,, induces an anti-homomorphism
of the groupV* into the linear group Aub). The expressions on the right-hand side of
(11) are the vector fieldd (X); transferred by that map to E€g. In terms of matrices

a = e*X, we rewrite (11) as

anCll' — Crpal'd} = Aa)f — A@)j (12)
or

aCatoaH-C=A@nr@te®ad), (13)

where we introduced the anti-symmetrizer 7, = 8:8/ — 6/8{. The left-hand side of

this equation is a coboundary 1-cocycle on the linear group, so we must prove that for the
right-hand side. Then, since group 1-cocycles are uniquely determined by their derivatives
at the identity, (13) will follow from (3). By virtue of (7), we have

A(bayr((ba)~! ® (ba)~1)
= (Ab)(@®a) +bA@) @t ®@a Hn (bt @b
=Ab)abteb™H +b{A@r@ tea b b
as required.
The counitis evident (H;) = ¢(X*) = 0. The antipode is determined on the generators
by the coproductS(X#) = —X*, S(H;) = —(e—“‘X)j.‘Hk. Let us prove that it is extended

anti-homomorphically over the whole algebra. That is trivial in the commutatisector.
Further,

[S(H;), S(XM)]=(e"* ") [Hi, X*]=(e * AL = —A(=X)! = S(X*, Hi)),
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as immediately follows from formula (9). Conditio§ (H;), S(H;)] = S([H;, H;]) boils
down to verification of

ko —-1" —1" -1 -1 =1ty 1" —1% ~m a-X
Crrtt; a; +a; [Hm,aj ]+aj [ai s Hyl =a,, Ci]-, a=e%"*.

We represent it as
S<Ci‘nna§"a7) + S((Hi, d}]) + S((a]", H;j]) = S(a,,C}"),

which holds true in view of (12).

Thus, we described the Hopf structure of the quantized algébyn g € B. We have
yet to check that the quantization is a natural transformation of categorieg: heta
Lie bialgebra morphisng — ¢’ such thatpoc = o’¢. This implies thaip(h) C b’ and
¢(v) C v'. We define the mag : U, (g) — U, (g') by the same formulas on the generators
as¢:

(XM =¢liXY,  O(H) = ¢f Hp.

The map® can be extended to the whole quantum algebras as a Hopf homomorphism. That
is evident for the coproduct because it is given by the product in the dual Lie groups, and
¢ is a Lie bialgebra homomorphism. That can be shown for the commutation relations as
well. Indeed, the quantum commutator (9) differs from the classical one by involvement of
the matriceso - X)j'( and(y - X)%. They specify the adjoint representation of the subalgebra
v* C g*. Because™ is a homomorphism of the dual Lie algebras and preservesariant
subspaces, matric¢$/ and¢;, are pulled through - X andy - X properly, e.g(oz,,X“')qb =

¢ (a9 (XH)), so the proof becomes immediate. O

Remark 3.4. We denoté/, (g), the quantization of the universal enveloping algei(g).
Here g is a symbolical notation rather than a deformation parameter. The deformation
parameter can be introduced by rescaling— In(¢)x, y — In(q)y of the structure
constants ofg*. As a module overC[[%]], » = In(q), the algebrd/,(g) is flat. The
parameteh may take any value, while the conventional deformation quantization is defined
as an algebra over formal serieshinin that respect, the algebts (g) is a particular case

of deformation quantization.

Algebralf, (g) contains two classical objects: universal enveloping algétifg and the
commutative algebra of functions FUn*) on the groug/*. In accordance with our conven-
tion, we may assume FQvi*) ~ U, (v). Actually, i, (g) is a bicrossproduct Hopf algebra
U(h) > Uy (v), with the coaction ot/ (h) given by H; — (e**)¥ @ H.

4. Duality, double, and quantization
We denoteH{ the image of the catego#§ with respect to the quantization functor. The

categoryB is evidently self-dual, the involutioa going over into—o*. Let us prove the
analogous assertion f@t and deduce explicitly the canonical element.
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Theorem 4.1. The category is self-dual. Moreovei/; (g) = Uy (g%).

Proof. As a linear spacé/, (g) is the tensor produéi, (v) ® U4(h). There are two natural
algebra maps frort¥*(h) andi/ (v*) into L{;(g): we setn — g, ® n and¢ — ¢ ® ey for
n € U*(h) and¢ € U*(v). An easy check shows that

¢, XY (H)) = (nQ ¢, p(AX))Y(AH))) = (n, v (H))(L, p(X)). (14)

Here, we identify the functionals, n with their images i/ (g). Formula (14) implies that
linear space&(* (h) andif(v*) are isomorphically embedded irﬁq(g) (in fact, these are
homomorphisms of associative algebras, see Appendix A), and the inducdd(fa®
Uu*(h) — U*(hU (v*) is a linear bijection oty (g).

Let us choose, as the generatorixlgig), the bases$n’} C h* and{¢,} C v* dual to
{H;} and {X*}. It can be shown that the coproduct and the commutation relations have
the structure of (4) and (1), in terms of the generatgrs;’. That is done in Appendix A.
According to Theorem 3.3, the Lie bialgeligg, g) admits the unique quantizatiof (g*)
belonging to the category(. Hence, it coincides witl(; (g). O

Because of factorization (14) and due to the fact that the matrix elenwgentg H)) and

(¢, (X)) are the same as #f; and¢, were primitive elements of the classical universal
enveloping algebras, we can write down the canonical elerfiert U, (g*) ® U, (g).
However, it is convenient to deal with the opposite algeliyég*)op; moreover, it is that
algebra which takes part in construction of the double, the subject of our further interest. In
Appendix A, we derive the formula

T = exp(¢, ® X™) exp(n’ ® Hy) (15)

for the canonical elemerft € U, (g%)op ® U, (g).
Now, we proceed to the study of the double in the cate@brWritten explicitly, the Lie
product inD(g) is

[X*,Xx']=0, [n.n]1=0, [X*.9]1=0,  [Hi H]=C}Hpn,

[Cus 0] = ¥ulor  [Hin G = —o He— AL Lo, [Hi, XM] = AL XY,

[H;. n'] = Cln* + o, X" (g n'] = e,

[Gu. X'] = =y, X7 — A} 0. (16)

It is seen that the linear subn+ v* forms a Lie subalgebra (cf. Remark 3.2) acting on the
abelian ideah™ + v. Observe that the classical doublego€ B, is again a Lie bialgebra
from B. The Lie coalgebra of>(g) is that of the direct surg @ g*, and the corresponding
involutioniso @ (—o*).

Theorem 4.2. The quantum double construction preserves the categoiMoreover the
classical and quantum doubles are related by the fornaa, (g)) = U, (D(g)).

Proof. As a coalgebra, the quantum double coincides with the tensor prodidgt@fand
U, (g")op, Which are embedded as subalgebras, at the same time. Therefore, to prove the
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theorem, it suffices to show that the cross-relations have the appropriate form. Then, we will
satisfy the conditions of Theorem 3.3 which states the uniqueness of the quantization and
provides its explicit form. The cross-relations are deduced from the Yang—Baxter equation
on the canonical element in the double and are written as

v __ o v pBo ¢y
epe” =eegm,,,,m;"" S},

where{e,} is a linear basis i/, (g) and{e*} C U,(g") its dual. The tensora’,,, and

yao
m" P’ denote the iterated coproduct structure constants§Arithe matrix of the antipode.
Using explicit formulas (4) for the coproducts

(AQid) o AX)=D(X®1®1,19X®1L 1311 X),

AR oAH) =" @ *@H+"*@H®1+H®1®1,

A®iId)oAN) =DnR11,131111Qn),

AR oA =@’ @+ R®®1I+®1I®1, 7)
we get the required result. Consider, e.g.,

H = (e X, )H + (e, "¢ H + (H, e ")t

(only non-vanishing terms retained). Thus, we obtain the expression for the commutator
[H;, ¢l = _“fu' H; — Afﬂ;v. Sirr_lil_arly, one can prove that* andn' form a commutative
algebra, invariant under the adjoint actionffandz,. O

Let us illustrate the construction of the double by the example whea h with the

nil cobracket. In this casé{,(g) = U(g), and the quantum double is that of the clas-
sical universal enveloping algebra. The double of the group algebra of a compact group
finds applications in topological filed theories with topological interactions (see, e.g. [24]
and references therein). The algel?d/{(g)) is generated by the elemenk and '

with the undeformed commutation relations. The univeRsahatrix is then the group el-
ementR = exp(n’ ® H;). ConditionRA(H;) = A’(H;)R immediately follows from

the commutation relations, because the group element is invariant with respect to the ad-
joint action of the subalgebrn EquationRA(n') = A/(n)R is better to check in the

form

R12(A @ id)(exp(n’ ® H)Ry = (A’ @ id)(exp(n’ ® H;)),

which is just the Yang—Baxter equation. It is also a simple corollary ofjthvariance of
the R-matrix. We use here the fact that the group elementg¢xp H;) is a bicharacter of
the double.

The remainder of this section is devoted to quantization of coboundary Lie bialgebras
from B. To use the advantages of functorial property of the quantization, we assume that
the r-matrix, as a Lie bialgebra morphisgi — g (with g* equipped with the opposite
bracket) be that ir8. It means that commutes with the involution (we recall that for
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dual Lie bialgebrag*, g), the involutive map is taken to bes*). The general form of is
then

r="P,H ®X"+Q X"®H,. (18)

Proposition 4.3. The universalR-matrix R € ufz(g) guantizing the classical-matrix
(18)is given by the formula

R = exp(Pl, H; ® X") exp(Q), X" ® Hy). (19)

Proof. Ther-matrix defines a homomorphisf(g) — g according to Theorem 2.2. We
apply the quantization functor to this homomorphism getting a homomorphism of Hopf
algebrasD (U, (g+)) — U, (g), along the line of Theorem 3.3. Then, we evaluate that Hopf
algebra homomorphism on the canonical element (15) thus coming to (19). |

Formula (19) generalizes the expression for the univeRsalatrix corresponding to the
jordanian quantizatiot¥ (b(2)) of the Borel subalgebra(2) c sl(2) [20].

5. Conclusion

Drinfeld’s conjecture of the possibility to quantize an arbitrary Lie bialgebra was proven
by Etingof and Kazhdan [25]. Although there are numerous examples of quantum algebras,
the problem of exponentiating a Lie bialgebra structure in every particular case remains
highly non-trivial. In this paper, we did it for a class of algebras playing significant role
in the classical differential geometry and physics, namely inhomogeneous Lie algebras.
This class forms a nice self-dual category invariant under the quantum double operation.
The quantization built is a functor from the Lie bialgebra category of concern into the
sub-category of Hopf algebras. This functor commutes with the functor of dualization and
the double procedure. We showed that the quantization of inhomogeneous Lie algebras
possessing classicalmatrix contains a quasitriangular Hopf algebra and gave an explicit
expression for the univers&-matrix.

The class of Hopf algebras considered in this paper includes the twisted universal en-
veloping Lie algebras investigated in [10—12]. Those are characterized by the identification
v ~ bh* and involve non-degenerate Lie algebra 1-cocycles in building the semi-direct
sumb > h*. The class of inhomogeneous Lie bialgebras is much wider than that stud-
ied in [10-12], since the double of a triangular Hopf algebra is not a triangular
one.

The appearance of Lie group 1-cocycles in construction of quantization is quite under-
standable. According to Drinfeld [5], a group 1-cocycle with value in the Lie algebra exterior
square defines a Poisson—Lie structure on the group. Genefatardy and X" € v are
the coordinate functions on the dual gro@p = H* <« V*, and the quantum commutation
relations among them represent nothing else than the Poisson bracket. Indeed, the classical
commutation relations of the type#&/{, H;] and [X*, X"] are given by the Poisson-Lie
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structure on the abelian subgroffy and the trivial Poisson bracket on the subgrdip
Further, the Poisson bracket must satisfy the relation

A(H, XN ={"*®@H+H®LD(X®118 X))
= *@D{1®H, D(X®11® X)}
+{HR®LDX®1 11 X)}A({H, H})
={"*@H+H®1 & *QH+H®1)
="YX QH, H) + (H, H} @1+ (" HY@ H + (H,e**} ® H
(20)
(we drop all the indices for the reason of transparency). These expressions involve the
Poisson bracket and the multiplication in the function algebra on the g¥éup H* <« V*.
It is seen that only the product in FUNt) actually enters formula (20). This product
commutative and coincides with that g (v) C 4, (g). So, the commutation relations (5)

and the Lie—Poisson bracket amoHgand X* satisfy the same functional equations (see
Theorem 3.3) and, therefore, must coincide.
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Appendix A

The aim of this appendix is to exhibit the details of the proof of the formula (15). The
canonical element for the universal enveloping algéhna) is [5]

e(ﬂ@X“ — ZZ(ng, e é‘l,Ln) R X,ul’ e X:u)l’
"R

whereii = {u1, ... , u,} stands for the ordered multi-index of lengtfand the parentheses
denote symmetrized monomials,,, . .., ¢,,) = (1/n)(X/s(@) "y Lo(ur)s - - - » $o(un))

of degree:. Here,o runs over all permutations of the multi-indgx The symmetry coeffi-
cient s(i1) is equal to the order of the stability subgroup @f Similarly, we
have

e ®Hi =ZZni1,...,ni”®(H,-l,...,Hi)
nog

for the algebré/(h). Hence, due to the factorization of the matrix elements of the canonical

pairing (see Section 4), the elemeft®X" ¢"' ®Hi s canonical fotd, (g)5p- It remains to
check formulas (4) and (5) for the coproduct and the commutation relations on the generators
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Sus 77i-
('n/, XM, XM (Hy, ..., H;,))

=e(X", ..., X"Yn' @', A(Hy, ..., H;,))

= e(X", . XMt @0/, Ao(Hyy, .., Hi,))-
The transition fromA to the classical coproductg is performed in the following way.
While pushing the factorse“'X)f.‘ appearing inA(H;,) to the left, we act as though they
commute with allH;. That can be done because the eleméants generate an ideal and,
once appeared, they are annihilated by the elemgni&hen, all the factorSe""X)f.‘ being

placed on the left are reduced to 1. So, the generafonave the classical commutative
multiplication. Further,

(Culv, XM, L XM (Hyy, ., Hiy))
= (L0 ® Loy AXML, L XF (Hyy, .., H)))
= (Cu ® G, AXM, L XM (Hiy, - -, Hi,) ® 1))
= e(Hiy, .., Hy)(Cu ® Coy AXHL, L., XFn)),

and, therefore;’s generate the classical universal enveloping Lie algéfgrd), with the
ordinary Lie commutation relations. Among the matrix elements

(Cun', XM, o X (Hyy, ..., Hy))
= (¢, ®n, (XM, ... X" @1)A(H;, ..., H,))

only those survive, where < 1. Developing products ofA\(H)’s, we see that monomials
1® H;,, ..., H;, turn out to be symmetrized automatically, hence, we can retain terms of
the first degree in ® H; only. Furthermore, ifz = 1, then with necessityy = 1. The
non-vanishing pairings are

(€un's XM (Hiy, .., i) = (G @', XU (Hyy, -, Hi, ) (X)) ® Hy)
= (£ ®n', o(X) ® Hy),

wherep(X) is a result of pulling the exponential to the left. Thus, we state that the commu-
tator¢, n' —n' ¢, does not vanish only on the eleme#, , . . ., H;,,), therefore, it depends
solely ony'.

We have yet to find the coproduct. It is straightforward thdt) survives on the el-
ements containing n&’s and, therefore, is expressed by the Campbell-Hausdorff series
corresponding td/(h). For A(¢) the non-trivial pairing is with element¥* @ 1 and
(Hy, ..., H;,,) ® X"*. While pulling H’s to the right, we can assume that they commute
with X’s via the classical relations. The commutator is lineaXirbecause the higher
degrees will vanish. Thus, we come to the desired formula

A = ("), @0+ ® 1.

Thus, we verified that the algebra generategby;,, belongs to the categofy and proved
the formula (15) for the canonical element.
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